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1 Introduction

Longitudinal data are now widely analysed using linear mixed models, with `random slopes'
models particularly common. These models can successfully account for the dependency that
arises when repeated observations are made over time on each individual in a dataset, but make
strong assumptions regarding the nature of this dependency. In the context of modelling CD4 cell
counts over time in human immunode�ciency virus (HIV)-positive patients, it has been shown that
the incorporation of non-stationary stochastic processes such as Brownian motion or integrated
Ornstein�Uhlenbeck (IOU) processes into the modelling framework can lead to a very substantial
improvement in model �t1;2. Recently, the use of a fractional Brownian motion component has
been shown to provide a further improvement3. However, these extensions to the standard linear
mixed model have not been widely used in practice, and are not readily implemented in current
statistical software programs. The presence of such a component in a model for longitudinal data
implies that the progress of the state of the underlying biological system for each individual does
not follow a deterministic relationship with time, but rather follows an unpredictable stochastic
path.

The nlme package4 for R allows the user to �t a wide range of linear and non-linear mixed e�ects
models, with in-depth documentation and a wealth of examples provided in the accompanying book
by Pinheiro and Bates5. As well as incorporating within-subject dependence resulting from the
inclusion of `random e�ects' in a speci�ed model, nlme also allows for a correlation structure to be
imposed on the residual error terms (with estimation of any associated parameters) and for the
residual error variance to be modelled as a function of variables in the data under consideration.
It is even possible for the user to create their own correlation structures or variance functions for
inclusion in the estimation of models in nlme.

It is possible to implement user-de�ned correlation structures in nlme to obtain point estimates
of the parameters in linear and non-linear mixed e�ects models incorporating Brownian motion
or IOU processes. However, some further additions to the original nlme code are required to
obtain con�dence intervals for the natural model parameters and to return a �tted model object
that reports the natural parameters upon use of print or summary. The covBM package provides
wrappers for the standard nlme functions in order to achieve these goals.

In Section 2, the characteristics of the statistical models under consideration are speci�ed, and
in Section 3, examples are provided to illustrate use of the functions provided in covBM to �t such
models.

2 Model description

2.1 Scaled Brownian motion

Brownian motion (also known as a Wiener process) is a non-stationary stochastic process that
constitutes a continuous-time generalisation of a simple random walk6, in which successive incre-
ments are independent of the history of the process. When considered in terms of a given set of
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observation points, a scaled Brownian motion process, denoted Wt at time t, is de�ned by the
properties:

W0 = 0

Wt −Ws ∼ N(0, κ(t− s)) for 0 ≤ s < t.

The process starts at zero at time (t) zero, and increments of the process are stationary,
independent (for disjoint periods of time) and normally distributed with mean zero and variance
equal to the di�erence in time between observation points scaled by a constant factor κ. These
conditions lead to the following characteristics:

E[Wt] = 0

Var[Wt] = κt

Cov[Ws,Wt] = κ ∗min(s, t).

The distribution of a set of n observations relating to a given series of time points therefore
follows a multivariate normal distribution with a mean vector of n zeros and covariance matrix
de�ned by the formulae given above.

2.2 Scaled fractional Brownian motion

Fractional Brownian motion represents a generalisation of a Brownian motion process in which
increments for disjoint time periods are not constrained to be independent, although they do
remain stationary. The process was introduced by Mandelbrot and van Ness7. The characteristics
of a fractional Brownian motion process are determined by an additional parameter, referred to
as H or `the Hurst index', that may take a value in the range (0,1). Standard Brownian motion
represents a special case of fractional Brownian motion, corresponding to H = 1

2 . As for standard
Brownian motion, the expectation of the value of the process is zero for all points in time.

When H < 1
2 , successive increments of the process are negatively correlated. This has the

consequence, �rstly, that the path of the trajectory appears `jagged' and, secondly, that realisations
of the process tend to revert towards the mean of zero. For H > 1

2 , successive increments of the
process are positively correlated. This means that the path of the process has a relatively `smooth'
appearance, and also that realisations of the process tend to diverge away from zero.

As for Brownian motion, a scale parameter (κ) can be added to the standard de�nition of
fractional Brownian motion, corresponding to the variance of the process at t = 1. We may then
characterise the properties of the process as follows:

W0 = 0

E[Wt] = 0

Var[Wt] = κ |t|2H

Cov[Ws,Wt] =
κ

2

(
|s|2H + |t|2H − |t− s|2H

)
.

2.3 Integrated Ornstein�Uhlenbeck process

The IOU process is another non-stationary Gaussian stochastic process that has also been used to
model CD4 counts in HIV-positive patients, a full description is provided by Taylor et al.1. The
process has the following characteristics:

W0 = 0

E[Wt] = 0

Var[Wt] =
κ

α3

(
αt+ e−αt − 1

)
Cov[Ws,Wt] =

κ

2α3

(
2α ∗min(s, t) + e−αt + e−αs − 1− e−α|t−s|

)
.
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We have used the symbol κ to denote the variance scaling parameter (σ2 was used by Taylor et
al.1). The α parameter determines the extent to which the process reverts towards its mean value.
For values of α approaching in�nity, the process is equivalent to scaled Brownian motion, whereas
for values of α approaching zero the process is equivalent to a random slopes model (without a
random intercept)1.

2.4 Marginal distribution

For models incorporating Gaussian processes such as Brownian motion, the fact that the marginal
distribution of the full vector of observations of the outcome variable is multivariate normal
(MVN) means that parameter estimation can be achieved through adjustment of the methods
used for standard linear mixed models. The linear mixed model for longitudinal data can be
expressed in the form8:

yi = Xiβ + Zibi + ei (1)

bi ∼ MVN(0, Ψ)

ei ∼ MVN(0, Ri).

Here, yi represents the vector of ni observations for the i th individual, Xi represents their
design matrix for the `�xed e�ects' parameters β, Zi represents the subset of the columns of the
design matrix associated with the `random e�ects' for each individual bi and ei is the vector of
residual errors for each measurement occasion. The vectors of random e�ects b1,b2...bN and
residual errors e1, e2...eN for each of the N individuals are independent of one another. It can be
easily shown that this formulation leads to the following marginal distribution for yi:

yi ∼ MVN(Xiβ, ZiΨZT
i + Ri).

When linear mixed models are �tted to longitudinal data, it is common to assume that the
residual errors for each observation within each individual, ei, are independent and with constant
variance, σ2, i.e. Ri as de�ned in (1) is equal to σ2Ini . However, other forms for Ri are widely
used, particularly for the analysis of longitudinal or spatial data, for example the exponential
correlation structure5.

The remaining variability in the model, once the random e�ects have been accounted for, can
also be subdivided into a component relating to a Gaussian process (independent of other model
components) with expectation zero for all time points and an independent residual error for each
observation. De�ning Σi as the covariance matrix resulting from the chosen Gaussian process and
set of time points ti for the i

th individual, the linear mixed model can then be expressed as:

yi = Xiβ + Zibi +Wi[ti] + ei (2)

bi ∼ MVN(0, Ψ)

Wi[ti] ∼ MVN(0, Σi)

ei ∼ MVN(0, σ2Ini),

with marginal distribution:

yi ∼ MVN(Xiβ, ZiΨZT
i + Σi + σ2Ini).

Although here we have focused on the marginal distribution for linear mixed models that
incorporate a stochastic process, similar adjustment of the multivariate normal residual error
distribution (i.e. Ri) can also be made for non-linear mixed e�ects models.

3 Examples

3.1 lmeBM function

The lmeBM function is a wrapper for the lme.formula function from the nlme package, i.e. the
lme function as used with a formula argument to specify the desired model; and the various
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arguments can be used in exactly the same way as the original nlme function. However, lmeBM
allows Brownian motion, fractional Brownian motion or IOU process components to be added to
a model.

Included in the covBM package is a dataset of serial CD4 counts obtained in HIV-positive
children. This dataset is discussed in Data Analysis Using Regression and Multilevel/Hierarchical
Models by Andrew Gelman and Jennifer Hill9, and the original is available online from the home
page of this book. In the present package, rows with missing values of `CD4CNT' (CD4 count on
original scale), `visage' (age of child in years at given visit) or `baseage' (age of child in years at
initial visit) have been removed.

> library(covBM)

> head(cd4)

newpid visage treatmnt CD4CNT baseage sqrtcd4 t

1 1 5.330833 1 626 3.910000 25.019992 1.4208333

2 1 5.848333 1 220 3.910000 14.832397 1.9383333

3 2 3.565000 2 30 3.565000 5.477226 0.0000000

4 2 3.778333 2 4 3.565000 2.000000 0.2133333

5 3 6.124167 1 714 6.124167 26.720778 0.0000000

6 3 6.354167 1 523 6.124167 22.869193 0.2300000

We will consider models for square root-transformed CD4 counts `sqrtcd4', as this provides a
better approximation to the normal distribution, in terms of the time elapsed in years since the
initial visit `t'. The variable `newpid' provides unique patient identi�ers. The `treatmnt' variable
indicates whether that child was a control (==1) or given a zinc supplment (==2). However, this
variable is not considered below.

First, we �t a standard `random slopes' linear mixed model, using the lme function from the
nlme package. We choose here to obtain the maximum likelihood parameter estimates throughout,
although restricted maximum likelihood estimation could also be implemented using the argument
method=="REML".

> RS_model<-lme(sqrtcd4~t, data=cd4, random=~t|newpid, method="ML")

> RS_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3424.766

Fixed: sqrtcd4 ~ t

(Intercept) t

30.664754 -5.556963

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.606196 (Intr)

t 5.792515 -0.375

Residual 5.354337

Number of Observations: 976

Number of Groups: 226

We then �t a `random slopes' linear mixed model with additional inclusion of a scaled Brownian
motion process. This requires the covariance=covBM argument using the lmeBM function, which
exactly follows the lme syntax. The parameter estimates for the model do not converge when
using the default optimiser in this dataset, but the model can be successfully �tted using the
control=list(opt="optim") argument.
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> BM_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covBM(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> BM_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3421.276

Fixed: sqrtcd4 ~ t

(Intercept) t

30.726746 -5.505073

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.675137 (Intr)

t 3.362038 -0.732

Residual 4.850621

Stochastic process component: covBM

Formula: ~t | newpid

Parameter estimate(s):

Kappa

34.92393

Number of Observations: 976

Number of Groups: 226

A further generalisation of the model to incorporate a fractional Brownian motion process can
also be considered:

> fBM_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covFracBM(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> fBM_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3420.997

Fixed: sqrtcd4 ~ t

(Intercept) t

30.763016 -5.479037

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.727100 (Intr)

t 3.272245 -0.83

Residual 4.551875

Stochastic process component: covFracBM

Formula: ~t | newpid

Parameter estimate(s):

Kappa Hurst index
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40.8411824 0.3776367

Number of Observations: 976

Number of Groups: 226

The �tted model objects created using the lmeBM function are of class "lme", and so all the
usual nlme Methods can be used to extract and view useful information. For example, anova.lme
can be used to compare a set of �tted models:

> anova(RS_model, BM_model, fBM_model)

Model df AIC BIC logLik Test L.Ratio p-value

RS_model 1 6 6861.531 6890.832 -3424.766

BM_model 2 7 6856.552 6890.736 -3421.276 1 vs 2 6.979464 0.0082

fBM_model 3 8 6857.993 6897.061 -3420.997 2 vs 3 0.558621 0.4548

Both the likelihood ratio tests and a comparison of Akaike's information criterion (AIC) values
suggest that the model including a Brownian motion process should be chosen above a standard
random slopes model, but that there is not evidience to support the generalisation to a fractional
Brownian motion process. This conclusion is also supported by inspection of the approximate
95% con�dence intervals of parameter estimates for the fractional Brownian motion model, as the
con�dence interval for the H-index is inclusive of 0.5 (the value for a standard Brownian motion
process).

> intervals(fBM_model)$corStruct

lower est. upper

Kappa 19.37188236 40.8411824 86.1042900

Hurst index 0.05989256 0.3776367 0.8524892

attr(,"label")

[1] "Correlation structure:"

The random slopes model incorporating an IOU process returns a high estimate of the α
parameter, and does not show an improvement in �t relative to the scaled Brownian motion
model.

> IOU_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covIOU(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> IOU_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3421.164

Fixed: sqrtcd4 ~ t

(Intercept) t

30.721825 -5.490878

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.655067 (Intr)

t 2.879292 -0.877

Residual 4.886538

Stochastic process component: covIOU
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Formula: ~t | newpid

Parameter estimate(s):

Kappa Alpha

23758.24004 24.62638

Number of Observations: 976

Number of Groups: 226

> anova(BM_model, IOU_model)

Model df AIC BIC logLik Test L.Ratio p-value

BM_model 1 7 6856.552 6890.736 -3421.276

IOU_model 2 8 6858.327 6897.395 -3421.164 1 vs 2 0.224372 0.6357

3.2 nlmeBM function

The nlmeBM function is a wrapper for the nlme.formula function from the nlme package. As for
lmeBM, nlmeBM allows Brownian motion or fractional Brownian motion components to be added
to a non-linear mixed e�ects model.

As an illustrative example, we consider the Milk dataset available in the nlme package. This
dataset is discussed in Chapter 5 of Diggle et al.10, and contains measurements of the protein
concentration of the milk of a number of cows assessed weekly following calving. The cows are
divided into groups according to diet, but we ignore this for the sake of simplicity. We �t an
asymptotic regression function, using SSasmyp from nlme, with three �xed e�ects parameters:
Asym representing the horizontal asymptote for large values of the time variable, R0 representing
the response at time zero and lrc representing the natural logarithm of the rate constant (see
Pinheiro and Bates5 for further details). We consider an initial model with independent errors of
constant variance and a second model with correlated errors following a continuous autoregressive
process, both �t using the nlme function. Thirdly, we consider a model including a fractional
Brownian motion process within each cow in addition to independent residual errors, using the
covariance=covFracBM argument for nlmeBM. A subject-speci�c `random e�ect' is assigned to the
asymptote parameter in each of the models.

> Model_1<-nlme(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ start = c(Asym = 3.5, R0 = 4, lrc = -1))

> Model_2<-nlme(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ correlation=corCAR1(form=~Time|Cow),

+ start = c(Asym = 3.5, R0 = 4, lrc = 0))

> Model_3<-nlmeBM(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ covariance=covFracBM(form=~Time|Cow),

+ start = c(Asym = 3.5, R0 = 4, lrc = -1))

> AIC(Model_1)

[1] 301.4711

> AIC(Model_2)

[1] -18.96245

> AIC(Model_3)

[1] -23.20265

> Model_3
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Nonlinear mixed-effects model fit by maximum likelihood

Model: protein ~ SSasymp(Time, Asym, R0, lrc)

Data: Milk

Log-likelihood: 18.60133

Fixed: Asym + R0 + lrc ~ 1

Asym R0 lrc

3.34894647 4.72812704 0.03811161

Random effects:

Formula: Asym ~ 1 | Cow

Asym Residual

StdDev: 6.779466e-08 5.609692e-05

Stochastic process component: covFracBM

Formula: ~Time | Cow

Parameter estimate(s):

Kappa Hurst index

0.07054058 0.16214425

Number of Observations: 1337

Number of Groups: 79

On the basis of the AIC values, the model including the fractional Brownian motion component
provides the best �t to the data of those considered here.
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